Table des matières

1. Brève histoire de la chimie organométallique ... 5

2. Les notions fondamentales
 2.1 Les différents types de ligandes et décompte des électrons dans les complexes 11
 2.2 Orbitales atomiques (OA) des métaux de transition ... 16
 2.3 La coordination de l'addition (R⁻) en CO ou en alcène, aspects théoriques .. 37
 2.4 Addition d'un ligand coordiné (R⁻) à un CO ou à un alcène, aspects théoriques ... 50

3. Les principales fonctions de la chimie organométallique
 3.1 Les hydrides ... 65
 3.2 Les métaux carbonyles .. 74
 3.3 La liaison métal-carbone .. 85
 3.4 Les complexes de carbènes .. 100
 3.5 Les complexes de carbynes .. 124
 3.6 La coordination π, aspects théoriques .. 129
 3.7 Les liaisons métal-métal ... 143
 3.8 Les complexes phosphines .. 164

4. Quelques applications en synthèse organique
 4.1 L'hydrogénation des alcènes et réaction associée .. 193
 4.2 L'hydrogénation asymétrique .. 199
 4.3 Les complexes benzène-zirconocène en synthèse .. 203
 4.4 Les complexes zirconium en synthèse ... 206
 4.5 Les complexes de carbènes .. 209
 4.6 Les complexes de carbynes .. 212
 4.7 Les complexes phosphines .. 218

5. Quelques applications en catalyse homogène ... 227
 5.1 L'hydrogénation des alcènes et réaction associée .. 228
 5.2 L'hydrogénation asymétrique .. 234
5. a L'hydrorylation des alcènes ... 239
5. b Synthèse de l'acide acétique et du glycol 245
5. c Polymérisation et oligomérisation des alcènes et des diènes 248
5. d L'atéthéase des alcènes ... 254
5. e Quelques applications catalytiques du palladium 260
5. f Époxydation et dihydroxylation asymétriques des alcènes 267

A OM de complexes modèles ... 279