Table of contents

Introduction

9

**I Physics "pour tout Le Monde"
by D. Larousserie and P. Lepidi, journalistes au Monde**

11

1 Why do we swim faster underwater? 11
2 Why don t we make longer rowing oars? 14
3 Why do balls zigzag? ... 17
4 Why do jumpers have to rotate their body around the bar? 20
5 Why the poles are not longer? 3
6 Why don t we jump with our eyes wide - shut? 5
7 Why do arrows warp? ... 8
8 Why does the ball spin before ending up in the basket? 31
9 Why do we never forget how to ride a bike? 34
10 Why do sprinters have swollen calves? 37
11 Why don t we run barefoot? 40
12 Why do race walkers flail their arms? 43

II Waves and fluids

47

1 Rowing, Sailing and Swimming
 by M. Fermigier and M. Rabaud 47
 Some fundamental principles of the physics of sailing
 by R. Garrett .. 53
3 Topics on the Physics of Sailing
 by R. Garrett .. 60
4 Fluid Structure Interaction of Yacht Sails in the Unsteady Regime
 by B. Augier, P. Bot, F. Hauville et al. 66
5 Contribution to the study of propulsion in front crawl swimmer
 by J.-M. Hespel, M. Sidney, F. Huot-Marchand et al. 79
6 Effects of fluid stratification on swimming, rowing and paddling
 by L.R.M. Maas .. 88
Table of contents

13 Aerodynamics of jump in downhill ski racing
 by G. Gibertini, G. Andreoni, M. Fusca et al. 30
14 Numerical investigation of the discus flight
 by S. Pacholak .. 314

IV Elasticity .. 321
1 Introduction: Elasticity in the physics of sports
 by J. Hoepffner ... 321
2 High jump and pole vault: a classical case of tunneling?
 by A. Eddi ... 334
3 Models for an alternative pole vault
 by J. Hoepffner ... 345
4 Energy transformations in the pole vault
 by N.P. Linthorne .. 358
5 Fosbury-flop: What Biomechanics can tell the coach?
 by G. Laffaye .. 366
6 The Physics of Baseball Bat Performance Measurements
 by L. Smith ... 37
7 The Toe Poke
 by C. Cohen, B. Darbois Texier, D. Quéré et al. 383
8 Slacklining: dynamics of a fall and strategies towards equilibrium
 by E. Reyssat, A.-L. Biance .. 394

V Friction .. 407
1 Friction: an introduction, with emphasis on some implications in winter sports
 by L. Bocquet .. 407
Experiments on the drag reducing properties of superhydrophobic surfaces
2 The physics if ice hockey: skating, the slap shot and body checks
 by A. Haché ... 439
4 Physics of Elastic Spheres Skipping on Water
 by J. Belden, M.A. Jandron and T.T. Truscott 447
5 Ball-hole interaction in basketball and golf
 by K. Piroird, D. Quéré and C. Clanet 459
6 Collision, deformation and bounce of a squash ball
 by C. Cohen, B. Darbois-Texier and P. Brunet 471

VI Statistical Physics .. 481
1 Introduction
 by M. Tolan .. 481
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Professional Football and Bessel-Functions: A Statistical Analysis</td>
<td>M. Tolan, M. Paulus, R. Fendt et al.</td>
<td>484</td>
</tr>
<tr>
<td>3</td>
<td>Do the new rules of volleyball enhance tension?</td>
<td>F. Gallaire, M. Choroszynski and M. Van Den Driessche</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Statistics, dynamics and football</td>
<td>R.S. Mendes and L.C. Malacarne</td>
<td>505</td>
</tr>
<tr>
<td>5</td>
<td>A network theory analysis of football strategies</td>
<td>J. López Peña and H. Touchette</td>
<td>517</td>
</tr>
<tr>
<td>VII</td>
<td>Human motion</td>
<td></td>
<td>529</td>
</tr>
<tr>
<td>1</td>
<td>Introduction: Human movement science</td>
<td>G. Laffaye, N. Benguigui and M.-A. Choukou</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>Biological and technological movement</td>
<td>A.E. Minetti</td>
<td>543</td>
</tr>
<tr>
<td>3</td>
<td>Modeling human body as spring-mass system to assess athletic activities</td>
<td>G. Laffaye and M.A. Choukou</td>
<td>556</td>
</tr>
<tr>
<td>4</td>
<td>Contribution of Physics to Athletic Monitoring</td>
<td>M.A. Choukou and G. Laffaye</td>
<td>561</td>
</tr>
<tr>
<td>5</td>
<td>A 2D adaptive human walking model</td>
<td>P. Pécol and A. Alaoui</td>
<td>565</td>
</tr>
<tr>
<td>6</td>
<td>Identification of kinetic and temporal factors related to snatch lift</td>
<td>P. Campillo and J.-P. Micallef</td>
<td>577</td>
</tr>
<tr>
<td>7</td>
<td>Muscle Architecture Alterations And Force Production</td>
<td>N. Babault and G. Lattier</td>
<td>587</td>
</tr>
<tr>
<td>8</td>
<td>Using constraints to estimate sports movement</td>
<td>F. Colloud, V. Fohanno and P. Lacouture</td>
<td>597</td>
</tr>
<tr>
<td>9</td>
<td>Using aerial movement simulation to teach mechanics theory</td>
<td>A. Decatoire</td>
<td>608</td>
</tr>
<tr>
<td>10</td>
<td>Complexity as an Index of Postural Control during Multi-joint Move-</td>
<td>C. Hansen, Q. Wei, J.-S. Shieh et al.</td>
<td>615</td>
</tr>
<tr>
<td>11</td>
<td>Once you have learnt how to ski, you'll never forget</td>
<td>D. Nourrit-Lucas, G. Zelic and D. Delignières</td>
<td>6</td>
</tr>
</tbody>
</table>